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What is a collocation?
e “collocation” can be defined in many different ways, depending on the application

e Manning and Schiitze (1999) identify three major criteria used in NLP applications:
non-compositionality, non-substitutability, and non-medifiability

e statistical approaches are based on J. R. Firth's notion of collocations:

You shall know a word by the company it keeps!

Collocations of a given word are statements of the habitual or customary places of that word
. The collocation of a word or a ‘piece’ is not to be regarded as mere juxtaposition, it is an

order of mutual expectancy.
Firth (1957), A synopsis of linguistic theory 1930-55

e in this STS (and related work) we make further restrictions on the candidate data:

collocation candidates are lexical arguments of binary syntactic relations
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Collocation Extraction Procedure

e source text, e.g. Frankfurter Rundschau corpus (= 40 million words)
e pre-processing: reformatting/conversion, tokenisation, spelling corrections (7)

e linguistic annotations:
part-of-speech, lemma (citation forms), morphosyntactic features,
chunk parsing (— YAC), full parsing with complex grammar

¢ collocation candidates:
syntactic patterns based on part-of-speech and chunk annotations,
or direct extraction from syntax trees

e large number of candidates: e.g. Adj+Noun pairs from Frankfurter Rundschau:
N = 1505192 tokens (instances) and V' = 537743 types (different pairs)
— need for filtering or ranking techniques
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Co-occurrence Frequencies

e the citation from Firth (1957) suggests that
collocations are characterised by high co-occurrence frequency

— rank candidates by frequency or apply frequency threshcld

e initial results are fairly good, but Zipf's Law leads to low recall:

J=1 [f=2]f=3]f=4]f=5[]=6]F=7[]=8
|#types 377881 | 77413 | 25487 | 14243 | 8193 | 5945 | 4090 | 3315

e the 3315 candidates with f = 8 include beifilliges Nicken (approving nod) and
vegetatives Nervensystem (vegetative nervous system), but also obviously random
combinations such as erste Partei and schoner Teil

o f(beifillig) = 16 and f(Nicken) = 11, but f(schoén) = 3594 and f(Teil) = 4536
— frequency of beifdlliges Nicken is higher than expected
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Contingency Table (observed frequencies)
wg =Nicken ws #Nicken
w1 :beiféllig 011 012
w1 ;ébeif'élig 021 022
O11+ 012+ 021+ 02 =N
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Contingency Table (observed frequencies)

wg =Nicken wg #Nicken
wy =beifallig 8 + 8 =16
+ +
wy #beifallig 3 + 1505173 = 1505176
=11 = 1505181

N =1505192 Adj+N pairs (instances) extracted from

YAC-parsed Frankfurter Rundschau corpus (= 40 million tokens)
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Contingency Table (observed frequencies)
we =Nicken wg #Nicken
w1 :beiféllig 011 012 = R1
+ +
w1 ;ébeiféilig 021 022 = R2
011+ 012+ 021 + Oz = N
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Expected vs. Observed Frequencies
U)2:B U)Q?éB w2:B w27éB
R1 C1 R1 CQ
=A | Ey = FEiy = =A
wq 11 N 12 N wy O Oz
RyC R>C:
wy 7& Al By = 21 Ey = 22 wy 7é A Oz1 Oas

expected frequencies

observed frequencies
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Mutual Information
. . . R,Cy
e assuming random combinations, the expected co-occurrence frequency is F1; = N

e use observed-to-expected ratio as measure of asscciation between lexemes

_ On

Ml = —
Eq

this measure has become known as mutual information (from information theory)

e however, in applications MI has been shown
to overestimate association between low-frequency pairs dramatically

— measures derived from statistical hypothesis tests correct for “small sample size”

o definition: an association measure (AM) is a formula
which computes an association score for a candidate pair from its contingency table
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Multinomial Sampling Distribution

e for a random sample of size NV from the population,
the random variables (X11, X12, Xa1, X22) are multinomially distributed:

P(X11 = k11 A X12 = k12 A Xo1 = ka1 A Xog = kaa) =
k11 kial ko1l kaa! \ No Ny Ny No
e each X;; is binomially distributed:

but the X;; are not independent of each other
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Corpus as a Random Sample

Population | wy =B | ws # B
w, = A T T2
wy #£ A Ty Ty

No =Ti1 + Tho +To1 + T

Sample | wy =B | we # B
w =A O O12
wi# A 021 Oas

N =011+ O12+ O21 + O22

— random variables (X1, X2, X321, X22) are multinomially distributed

with sample size N and probability parameters

Ty Thp Ty Typ
Ng? Ng? No’ Ny
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Relative Frequencies

o=

No
S Ti1 +Tha
=N
T+ Ty
71-2_T0

_9u
P="N
_Bi_Ou+t0p
b1 N N
_G_Ou+0y
D2 N N

true

relative frequencies
(population)

observed relative frequencies

(sample)
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Statistical Hypothesis Tests

e null hypothesis Hy and alternative hypothesis H;
are statements about relative frequencies (= probabilities) in the population

e test for independence:
Hy stipulates that a given candidate pair is a random combination of two lexemes

Hy: m=m -mg

e unknown parameters are estimated from sample: 71 = p; and 73 = ps

Hy: m=my :=m -Ta X p1-P2

e test decides whether sample provides sufficient evidence to reject null hypothesis,
by comparison with sampling distribution under Hy (written as Py(...) and Egl...])
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Exact Hypothesis Tests

e hypothesis test is based on sampling distribution of X;; with expected frequencies
R,C;
Eo[Xy] = By = =~

e significance (or p-value) of a given sample is the probability of observing a deviation
from the expected frequencies that is at least as great as in the sample

e Hj is rejected if p-value is smaller than a pre-defined significance level «a:
Po(X11 2 On) <«

(this test only compares O11 to E11 — most immediate evidence against Hp)

low significance level = high degree of certainty = conservative test
(typical values are & = 0.05 (95%), o = 0.01 (99%), or a = 0.001 (99.9%))
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One-Sided and Two-Sided Tests

o two-sided test rejects H if true value of 7 is different from g

Hétwo—sided) Cor # o

e one-sided test rejects Hy only if frequency is higher than expected

Hécne—mded) LT >

e in our situation, one-sided test is appropriate
e some tests are inherently two-sided — candidates with p < my must be excluded

e one-sided tests are slightly less conservative than two-sided tests
— best solution is to use two-sided test and discard candidates with p < g
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Binomial Test

e correct binomial distribution for X; leads to binomial test

N
binomial g <N> mE(1 — )Nk
k)° 0

k=011

PO
S (B (-

k=0

where Py(X11 > O11) = Z,ICV:OH Py(X11 = k) is expanded

e computation of exact probabilities for large samples may lead to numerical difficulties
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Poisson Test

o for large sample size N and comparatively small E¢q, the binomial distribution can
be approximated with the numerically easier Poisson distribution — Poisson test

[} Oq11—1

2y (B11)* oy (B11)*

Poisson :kEO et ;'1) =1- kE et ;'1)
=11 =0

e no upper limit for X1, but probabilities are vanishingly small when X1, > N

e small p-values indicate strong rejection of H
— it is convenient to show the negative decadic logarithm: — log,o(p-value)

e convention: higher AM scores indicate stronger association

e exact p-values for binomial test and Poisson test are still difficult to compute
for high-frequency candidates (O11 > 100, perhaps even lower)
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Yates’ Continuity Correction

e the z-score measure uses a continuous distribution (normal distribution)
to approximate discrete distributions (binomial or Poisson)

e Yates' continuity correction reduces |O;; — E;j| by 0.5 in order to correct for
quantisation error when computing p-values from the continuous approximation:

0ij = 04— 0.5 if O3 > Ey
Oij = Oij +0.5 if Oi]' < Eij

e Yates' correction greatly improves the normal approximation of z-score, but its
applicability in other situations is less obvious, and statisticians disagree whether it
should be used at all (Motulsky, 1995, Chapter 37)

e in many situations, Yates' does not lead to a better approximation of the limiting
distribution, but it makes the test more conservative (Agresti, 1990, p. 68)
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Exact and Asymptotic Tests

e if N and Fy; are sufficiently large, the binomial (or Poisson) distribution of X4
is approximately normal, with parameters = Ey; and 0% ~ Eq;

e the standardised z-score of X, approximates a standard normal distribution:

Ou — En
z-score = ————
VE

e unlike the p-value obtained from an exact test, an asymptotic test computes
a test statistic, which approximates a known distribution for N — oo

o the z-score statistic can be converted into a p-value using tables (traditionally)
or software (sensibly) for the limiting normal distribution

e for a one-sided asymptotic test like z-score,
multiply p-values by 2 to obtain the more conservative behaviour of a two-sided test
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Yates’ Continuity Correction

Normal approximation to binomial distribution

A

0.20
|

P(X=K)
I

0.05
I

0.00
L
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Yates’ Continuity Correction More Asymptotic Tests

Normal approximation with Yates' correction e Pearson’s chi-squared test X? (for independence of rows and columns) approximates
x? distribution with df=1 (degrees of freedom): 4 squares — 1 constraint — 2 estimates

/ i — Bij)?
chi-squared; = Z (Oi; — Fij)”
ig Eij

0.20
|

0.15
I

e when Yates's continuity correction is applied, the chi-squared formula becomes

P(X=k)
T

(104 — Ey| - 0.5)
E

chi-squared; = Z

i ”

0.05
I

e the t-score obtained from a t-test approximates Student’s ¢ distribution with df=N

g (= df=00); assumes normal distributions for binary indicator variables — questionable
0 5 10 15 20
‘ ~ On—En
t-score = ———
On
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Indicator Variables Homogeneity Tests
7m) _ 1 ifw; = AAwy =B for the m-th pair in the sample p = Ty +Tap r o= & _ O11 + O1s
7 ]10  otherwise No N Ci+C
(m) 1 ifwy = AAws# B for the m-th pair in the sample _ L = @ — L
1,7 = 41 1
12 0  otherwise T+ I Ci 011+ 02
(m) 1  ifwy # AANwg = B for the m-th pair in the sample p2= L ro= % = i
I = 0 otherwise Tig + Tag Cz  O12+ O3
(m) 1 ifw; # AAws# B for the m-th pair in the sample . ) .
I, = 0 otherw population ratios observed ratios
otherwise
N
Xij:ZIZ'(JTn) Ho: pr=p2=p =r
m=1
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e Pearson’s chi-squared test for homogeneity is equivalent to the test for independence

N(0110 — 01203,)”
(011 + 012)(011 + 021) (012 + 022) (021 + O22)

chi-squared;, =

o log-likelihood G? = —21log A (likelihood-ratio test, x? distribution with df=1)

L(O11,C4,r) - L(O12,Ca,7)

A —
L(011,Ch,r1) - L(O12,Ca,13)

where L(k,n,r) = rF(1 — r)n=F

o G? has a much simpler equivalent form (known as the entropy version):

. . O,
log-likelihood = 2 E 0, log =2
1]
(note that log-likelihood is a two-sided test!)
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Fisher’s Exact Test

e the null hypothesis of Fisher’'s exact test is not a statement about the full population
— only the observed sample is considered

e assumes fixed row and column totals (= marginal frequencies)

e under Hy the fixed numbers of lexemes are randomly combined into pairs,
leading to a hypergecmetric distribution for X,

min{R,,C1} (Cl) . ( Cy )

Fisher = Z k NRl_k
k=011 (Rl)

e the row and column totals in the formula above can be exchanged

e Fisher's test is one-sided;
as an exact test it yields p-values and suffers from numerical complexity
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Assessing the Quality of a Test

e most important mathematical criterion for asymptotic tests:
How well does the test statistic approximate its limiting distribution?

o Dunning (1993) shows that chi-squared statistic X2 gives poor approximation of the
x? distribution for low-frequency candidates (any E;; < 5) and suggests to use G2

e according to textbooks, Pearson's X2 converges more quickly to a x? distribution
than the G? statistic obtained from a likelihood-ratio test (Agresti, 1990, p. 49)
— for small sample sizes, G? gives a poor approximation

e but we have a large sample (size = N) with a highly skewed distribution

e Pedersen (1996) recommends Fisher’s exact test for very low frequency pairs
(this does not necessarily imply a poor approximation of the x? distribution by G2,
since Fisher's test is based on a different null hypothesis)
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Directions for Future Research

e ongoing research for my PhD project (and joint work with Brigitte Krenn)
e empirical investigations into the mathematical properties of AMs
e know your numbers: the question of numerical accuracy

e do we need yet another association measure?

statistics (association measures) for fractional counts

beyond bigrams: n-gram statistcs and the influence of categorical variables
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The PhD Thingy

my project: Understanding Collocation Statistics (working title)

current goals

— restriction to lexical arguments of binary syntactic relations

— a reference including all widely-used AMs, with explanation of their background,
connections between AMs, and analysis of their mathematical properties

— implementation guidelines and details, ensuring numerical accuracy

— methods and tools for the empirical evaluation of AMs, based on manual annotation
(includes techniques for evaluation of random samples to reduce workload)

— significance tests for (empirical) differences between AMs

— what factors influence the performance of an AM?
(e.g. corpus size, pre-processing, extraction, filtering, type of collocation)

— examples: Adj+N and PP+V pairs extracted from Frankfurter Rundschau

the companion website (work in progress): http://www.collocations.de/
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Empirical Investigations

precise mathematical analysis of the properties of AMs is tedious
— obtain empirical results (cf. Monte Carlo and randomisation methods)

method: compute AM scores for a large number of random contingency tables,
then compare results for different AMs, formulae, frequency layers etc.

lazy man's approach: construct mock data set where the O;; vary systematically,
then use UCS tools to annotate data set with AM scores and compare results

data set should cover wide frequency ranges, with higher density for small frequencies

need to choose fixed sample size to avoid having too many candidates
suggested representative sample size is N = 1000 000

note that many AMs (practically all asymptotic tests) are size-invariant
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Short-Term Goals

e put a short HTML version of this presentation on the website at

http://www.collocations.de/AM/

which supersedes On lexial association measures written in June 2001
(available from http://www.collocations.de/EK/)

start a central repository of association measures, including short explanation,
references, formula in terms of O;; and E;;, and connections to other AMs
— send input to evert@ims.uni-stuttgart.de

software for comparative empirical evaluation:
a collection of Perl scripts and R code called the UCS system

— no support for bigram extraction — complement to Pedersen's BSP/NSP
— early release version will hopefully be available soon (Unix only)
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Know Your Numbers

we usually take a cavalier approach towards numerical accuracy — at least | do
(i.e., we ignore the issue completely and use standard floating-point arithmetic)

another example: the cephes library of special mathematical functions
— Perl version includes regression tests, which fail miserably on Solaris 2.8

theory: Fisher's exact test or binomial test should give most accurate results
evaluation: performance of Fisher AM breaks down for highest ranks

(a closer look reveals negative probabilites for some candidates!)

What Every Computer Scientist Should Know About Floating Point Arithmetic
(Goldberg, 1991)

easy: high-precision arithmetic (e.g. GMP library, http://www.swox.com/gmp/)

more professional: interval arithmetic (Kearfott, 1996) — MuPAD 2.5
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Yet Another Association Measure

Aren't there enough yet? Isn't Fisher's exact test the best solution, if we can get the
numerics right? Is there room for substantial improvement, or are we just twiddling?

all statistics-based AMs attempt to measure the same quantity:
the significance of evidence obtained from the sample against the null hypothesis of
independence (random combination of lexemes into pairs)

is this really the correct translation of Firth's definition into mathematical terms?
Hy is rejected for at least half of the candidates, even at a = (0.001

the difference between high-ranking and low-ranking candidates is just that between
a very low probability under Hy and an incredibly low one

suggestion: try different alternative Hy : 7 > mp (against Hp: m < K - mp)
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Statistics for Fractional Counts

interpret fractional counts as estimates for the number of correct instances
— justifies interpolation approach for high-frequency candidates

a possible interpretation of co-occurrence frequencies Oq1 < 1:

— for a pair (4, B) with Oy; = 0.3, think of an idealised corpus 10 times as large,
which contains exactly 10 times as many instances of (A, B) with the same weights

— in this hypothetical corpus, O}; = 3.0, i.e. the parser expects 3 correct instances

— multiplying the corpus size by 10¥, we can always obtain integer counts

— relative frequencies p, p1, p2 remain the same for the hypothetical larger corpus

an AM g is size-invariant iff multiplying all observed frequencies with a constant
factor does not change the AM scores (or only by a constant factor):

g(k-O11, k- O1, k- Oa1, k - Og) = (k) - g(O11, O12, 021, O22)

surprisingly, most association measures are size-invariant
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Statistics for Fractional Counts

e we are now beginning to obtain fractional co-occurrence counts from stochastic

grammars (cf. the presentation by Zinsmeister and Heid)

e we can simply insert the fractional counts O;; into AM equations

(for all AMs based on asymptotic tests)

e however, there is no a-priori theoretical justification for this approach,

which amounts to interpolation between the grid of integer frequencies
(unproblematic when O;; > 5, but interpolation for 011 < 1 is just a wild guess)

e the actual data from the parser are instances of lexeme pairs,

each annotated with a probability weight = parser’s confidence in the analysis

e if these confidence estimates were correct, then among ten instances of a pair (4, B)

with weight 0.2 each (— O11 = 2.0) there should on average be two correct ones
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